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Resource allocation is a relatively new research area in survey designs and has not been fully addressed in
the literature. Recently, the declining participation rates and increasing survey costs have steered
research interests towards resource planning. Survey organizations across the world are considering
the development of new mathematical models in order to improve the quality of survey results while tak-
ing into account optimal resource planning. In this paper, we address the problem of resource allocation
in survey designs and we discuss its impact on the quality of the survey results. We propose a novel
method in which the optimal allocation of survey resources is determined such that the quality of survey
results, i.e., the survey response rate, is maximized. We demonstrate the effectiveness of our method by
extensive numerical experiments.
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1. Introduction

Surveys are used all around the world to measure socio-
economic status and well-being of people, to test theories, or to
make investment decisions, driven by the impossibility of observing
the entire population of interest (see [6]). No matter what the
framework of a survey is, its success relies on the active participation
of the sampled households and businesses. Nonresponse occurs
when members of a sample cannot or will not participate in the
survey. The impact of nonresponse appears in the inability of com-
puting a full-sample estimator of the population mean. Thus, a
bundle of practical issues is created, including bias in point esti-
mates, bias in estimators of precision, and inflation of the variance
of point estimators. The error caused by nonresponse is one of the
several sources of error in surveys and it has attracted a great deal
of interest among researchers across the world (see [6]). An appar-
ent solution to the problem is to increase the frequency of attempts
to gather information from reluctant sample members. Under
these circumstances, the costs of conducting surveys increase sig-
nificantly, which leads to new problems, such as budget overruns.
Therefore, a constant scientific challenge to the survey community
concerns developing new survey designs to accommodate the
presence of both nonresponse and high costs.

Modeling the bundle of processes behind a survey and under-
standing the numerous interactions between these processes have
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been a constant obstacle for researchers in their attempts to design
quality but cost-effective surveys. As a consequence, only few pro-
cesses have been investigated from a cost perspective, e.g., call
scheduling in [9]. More advanced studies investigate the relation-
ship between costs, quality and few survey features (e.g., the inter-
view mode, the schedule of calls). For example, in [7,11], the main
idea is to identify a set of design features that potentially influence
the survey costs and errors in the estimates and to monitor them
throughout the survey run. This information helps in subsequent
phases to alter the design features such that a desired balance be-
tween costs and errors is achieved.

When person or household characteristics (e.g., social and
financial) are employed to adjust the design features to a given
set of characteristics (i.e., different design features can be applied
to sample units with different characteristics) the resulting survey
design is termed adaptive (introduced in [16,14]). Adaptive designs
render realistic survey models and can be used to capture the
interactions between survey features, sample unit characteristics,
survey costs and quality.

In the present paper, adaptive survey designs are analyzed from
the perspective of resource allocation problems. To our knowledge,
this is the first paper that addresses designing surveys from a re-
source allocation perspective. Given a budget, a set of household
characteristics, and a list of survey features that influence costs
and quality, we model the allocation of survey resources such that
quality is maximized while costs meet the budget constraint. Our
interest in the problem is motivated by the increased difficulty
(e.g., higher costs, and higher nonresponse) survey organizations
are faced with in order to obtain high-quality survey estimates.
Statistics Netherlands is among the first organizations to consider
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redesigning their surveys such that planning of resources is taken
into account.

Resource allocation problems can be found in a wide range of
applications. In [12], the author investigates applications where
the resource allocation can be modeled as a continuous convex
nonlinear problem. Algorithms to solve such problems are also sur-
veyed and they most often involve finding the optimal value of the
Lagrange multiplier for the explicit constraint (mainly through
some type of line search). There are also numerous applications
that require a relaxation of the condition on strict convexity and
differentiability of the cost constraints, which increases signifi-
cantly the complexity of the problem. The auction algorithm pre-
sented in [1] finds a near optimal solution of this problem in
finite time.

In its integer or mixed-integer formulation, the resource alloca-
tion problem has an NP-complete worst case complexity (see [8]).
Therefore, only few such applications have been addressed in the
literature, e.g., optimal sample allocation in stratified sampling
(see [10,3]), manufacturing capacity planning (see [4]). The pro-
posed algorithms take advantage of the convexity in the objective
function and/or constraints. Applications where the objective func-
tion and/or the constraints include separable nonconvex functions
are often encountered (e.g., due to economies of scale). In this case,
additional difficulties in solving the problem are posed by the pres-
ence of several local optima. In [5], an approach is suggested to
solve such problems, namely solve a convex lower bounding
problem (e.g., the convex envelope) at every node of the branch-
and-bound search tree. Using the branch-and-bound framework
developed by [2], the optimal solution is reached in a finite number
of iterations. However, no implementation results or optimality
gap assessments are reported.

The resource allocation problem for survey designs has specific
features that lead to a formulation as a nonconvex integer nonlin-
ear problem, which prohibits the application of many algorithms
that are found in the literature. A possible approach could be to
implement solutions of convex approximations of the problem,
however, this may result in major errors in survey estimates. We
present an algorithm that solves the problem to optimality using
Markov decision theory. The algorithm reaches the optimal solu-
tion in a finite number of iterations. The numerical experiments
discussed here displayed short computational times on an Intel
Xeon L5520 processor.

The remainder of the paper is structured as follows. Section 2
discusses the mathematical model and Section 3 discusses the
algorithm to derive optimal adaptive survey design policies. Sec-
tion 4 presents a range of practical problems that can be han-
dled through this model and solution method. Numerical
examples of these situations are given in Section 5. Section 6
concludes the results of the paper and gives directions for future
research.

2. Problem formulation

Consider a survey sample consisting of N units that can be clus-
tered into homogeneous groups based on characteristics, such as
age, gender, and ethnicity (information that can be extracted from
external sources of data). Let G = {1,...,G} be the set of homoge-
neous groups with size N, for group g € G in the survey sample. The
survey fieldwork is divided into time slots, denoted by the set
7 ={1,...,T}, at which units in a group can be approached for a
survey. The survey itself can be conducted using certain interview
modes, such as a face-to-face, phone, web/paper survey; the set of
different modes is denoted by M = {1,...,M}. At each time slot
t € 7 one can decide to approach units in group g € G for a survey
using mode m € M. In doing so, successful participation in the sur-
vey depends on first establishing contact, and then be responsive

by answering the questionnaire. From historical data group-depen-
dent contact probabilities py(t,m) and participation probabilities
ry(t,m) can be estimated, which we consider as given quantities
in our problem. Note that from historical data it can also be ob-
served that certain time slots (e.g., morning, evening) have an
influence on the availability of the unit and the willingness to
respond. Therefore, to employ most of the available information,
the contact and response probabilities are modeled at the level of
time slots for each group as well rather than the mode only.

Denote by x,(t,m) a binary 0-1 decision variable that denotes if
units in group g are approached for a survey at time t using mode
m. Note that at time t only one mode can be employed to approach
a group, yielding the constraint °, _, X (t,m) < 1. When a success-
ful contact is established and the unit agrees to participate, the
survey ends with success; this happens with probability pg(t,m)
ro(t,m). Note that we assume independence between participation
and contact. However, if the unit refuses participation after suc-
cessful contact, the unit is not considered for a future survey ap-
proach; this happens with probability p,(t,m)(1 — ry(t,m)). Only
in the case that the unit is not contacted successfully, the unit
can be considered for a future survey approach (see Fig. 1); this
happens with probability 1 — pg(t,m). Thus, if the unit is ap-
proached again at time t' using mode m’, then the probability of
a successful approach is (1 — pg(t,m))pg(t,m')rg(t',m’), and the
probability of a contact failure is (1 — py(t, m))(l — pg(t’,m’)). In
general, the probability that a contact fails up to time t' is denoted
by fo(t') given by

5(t) = H I xe(t,m)(1 = py(t.m)) + (1 — xg(t,m))]

t=1meM

H (1 — Xg(t,m)py(t, m)].

t=1meM

Note that this is a highly non-linear expression in the decision
variables, which can be recursively computed by

folt) = T] Ixe(t',m)(1 = py(t',m)) + (1 = xg(t',m)lfe(t' ~ 1)

meM

= [T —xe(t, mpy(t'. m)lfy(t' — 1), (1)

memM

using the fact that fz(0) = 1. Using this definition, the response rate
for group g can then be computed by

Z ng(t - 1) Xg(tv m)pg(tv m)rg(t7 m)

te7 meM

The clustering of the N units usually results in groups that are
not of the same size or importance. Therefore, the response rates
for the groups are usually weighted by a factor wg (e.g., Wy = Ng/N
is taken in practice). Hence, the objective of the decision maker
becomes to maximize

SN Wefy(t = 1)xg(t, m)py (£, mrg(t, m), (2)

geG teT meM

by setting the decision variables xg(t,m) optimally. The decision
variables are subject to constraints, though, due to scarcity in re-
sources. In practice, due to resource management constraints, the
number of times that a group can be approached by mode m is lim-
ited to ky(m) times, leading to the constraint 3, ,X,(t,m) < ky(m).
By combining the objectives with all the constraints, we can draft
our optimization problem as a binary programming problem in
the following manner.
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xg(t m) 0
Contact failure,
go tot+1
No contact
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Fig. 1. Sequence of events for a given attempt.

max Y 3> wefy(t — 1)xg(t, m)p, (¢, m)rg(t, m)

geG teT meM

S.tY Xg(t,m) < kg(m),

teT

> xg(t,m) <1,

meM

Fo® =TI alt,m)(1 = py(t,m)) + 1 = xg(t, m)lfy(t - 1),

meM
VgegteT
f(0)=1, Vgeg,
Xg(t,m) e {0,1}, Vgeg, VteT, VmeM.

Vg e g, Vme M,

Vgeg, VteT,

(3)

Problem (3) represents the adaptive survey design problem in
which survey features with significant influence on the quality of
the survey are balanced. In our model, the features are the interview
mode, the number of allowed attempts, and number of time slots. The
solution of the problem is, however, not trivial. The objective func-
tion is a nonconvex nonlinear function, and the constraints do not
form a convex polytope either. As a consequence, our problem is
non-tractable from a mathematical programming perspective, even
for small-sized problems (e.g., one group and four time slots). In the
next section, we develop an algorithm that is able to derive optimal
solutions by aggregating information in the adaptive survey design
problem.

3. Adaptive survey design policies

In this section, we reformulate the adaptive survey design prob-
lem such that the problem becomes numerically tractable. In order
to do this, note that at any time ¢, it is sufficient to know the prob-
ability of contact failure up to time ¢, fg(t — 1), instead of the com-
plete configuration x(t,m) for t' <t for all g Denote by
f (fi,....fe) the vector storing the probability of contact failure
up to time t. Hence, glvenf( 1), the decision at time T is obvious
when one also keeps track of the number of times that mode m has
been used for each group g. Since the decision at time T is com-
pletely determined, one can then calculate the optimal decisions
at time T — 1, and continue working back towards the first time
epoch (see Fig. 2). By keeping track of the time, the contact failure
probability, and the utilization of the different modes, the problem
becomes completely Markovian and the problem can be cast as a
Markov decision problem.

Let the state space of the Markov decision problem be denoted
by S§=7x[0,1°x{0,1,...}°™, where s=(t,fK)eS has
components t, denoting the time at which the process resides,
f the probability of contact failure up to time ¢t and
K = (kg(m))gegmenr denoting that mode m can still be used kg(m)
times for group g. The action space A; is given by

As = {(ag(m))geg,mgw‘ag(m) € {0,1},ag(m) < kg(m

<1},

D ag(m)

memM

where ag(m) denotes the available action for group g using mode m.
More specifically, given the state space s the process is in, choosing
an action translates to choosing whether to approach (ay(m)=1) or
not (ay(m) = 0) provided that there are attempts left. If the number
of attempts has been exhausted, the only allowed action is not
approach. The transition probability p is given by p(s,a,s’)=1 if
t=t+1, fg/ = HmeM [] - ag(m)pg(tv m)lfgv and k,g(m) = kg(m)_
ay(m), and zero for all other s'. The rewards r are given by

=D wsds(m

gegmeM

Mabg(t, m)rg(t,m).

The tuple (S, A, p,r) completely defines the Markov decision prob-
lem (see also [13]).

The Markov decision problem can be solved by dynamic pro-
gramming (or backward recursion) by formulating the recursion
equations for state s = (t,f, K) given by

V(s) =max {r 5,a)+ Y _p(s,a,5)V(s )} max {Zngag )feDg (t,m)rg(t,m)

acAs ses geGmeM

+v<t+1,<H[1
mem

and by setting V(s)=0 for all s = (T + l,f, K). Note that the algo-
rithm only needs T iterations, and in each iteration only 2™ actions
need to be considered. Hence, for values of realistic size, the algo-
rithm is computationally feasible and is guaranteed to converge
to the optimal solution. The weighted response rate is then given
by V(s) witht=1, f;=1,and K =

ag(m)Pg(f-,m)lfg> ‘r(kg(m)ag(m)>ggg.m5.\/l>:|7 4)

geg

(kg (m) )geg,meM .
4. Features of the model

In the previous section, we formulated the adaptive survey de-
sign problem in which the focus was on the quality of the survey
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f(T-1) (T-2) A(T-3)
known known known
- 7 o 7
pd pd
xg(T, m), Vg xg(T-1,m), Vg
known known
Determine Determine
xg(T, m), Vg xg(T-1,m), Vg

(1) f(0)=1
known known

_— _—

/7 pd
xg(8, m), Vg xg(2, m), Vg
known known
Determine Determine
xg(2,m), Vg xg(1,m), vg

Fig. 2. Sequence of decisions.

results modeled by maximizing the weighted response rates.
However, the model formulation is sufficiently flexible to include
other features as well, such as budgetary constraints or capacity
restrictions. In this section, we discuss how these features can be
integrated within our existing framework.

First, we consider a constraint on the budget. Every time a
sample unit is approached for a survey, costs are incurred for
the effort. These costs mainly depend on the interview mode
and also on the outcome of each approach. Denote by b’(m)
the costs that are incurred by using mode m with a successful
outcome. For the costs that are incurred by mode m that results
in a failure, we distinguish two types of costs: bff(m) when the
failure occurs due to failure of contact, and b"(m) when the fail-
ure occurs due to failure to participate. Let B be the total budget
that is available for the survey. An approach at time t using
mode m bears the following costs

Pg(t,m)[rg(£,m)b*(m) + (1 — rg(£,m))b" (m)] + (1 = py (¢, m)b’ (m),
In general, the costs bg(t,m) at time t using mode m depend on

the contact failures before time t. These costs can be written as
follows

m)b*(m) + (1
m))b* (m)],

be(t,m) = X (£, m)fy(£ — 1)[pg(£,m)[re(t,
— rg(t,m))b" (m)] + (1 - pyt,

with f(t) given by (1). Hence, using this definition, the budgetary
constraint that needs to be added to problem (3) is given by

ZZZNgbg(t m) < B

geg teT meM

A capacity constraint can be addressed in a manner analogous
to the constraint on the budget. Let C be the available capacity,
measured by the number of interviewer hours available to survey
the sample. Similar to the cost structure, the required capacity de-
pends on the interview mode and the outcome of each approach.
Denote by c¢’(m), ¢<(m), and ¢ (m) the capacity utilized when the
approach is successful, or has failed due to contact failure, or failed
due to participation failure, respectively. Following the same steps
as above, the capacity constraint to be added to problem (3) is gi-
ven by

SN TS Nggg(t,m) < C

geg teT meM
with ¢g(t,m) defined as
Cg(t,m) = Xg(t, m)fg(t — 1)[pg(t, m)[rg(t, m)c*(m) + (1

—Te(t, m))Cf’( m)] + (1 = p,(t, m))c (m)].

Note that if the budgetary constraint and the capacity limitation
are added to the model, then the maximum number of attempts
ke (m) becomes obsolete. Hence, the binary programming problem
now becomes

max > >N " wefy(t

1)xg(t, m) pg(t m)rg(t,m)

8€G teT meM
St Y D" " Ngbg(t,m) < B,
8€G teT meM
DTS Ngg(t,my < C
8€G teT meM
> x(t,m)<1, Vgeg, VteT,
meM
fo®) = TT et m)(1 = pg(t.m)) + 1 = X (£ m)[f (£~ 1),
meM
VgegteT,
fg(o):] vVgeg,

by (t,m) = X (£, m)fy (¢ = 1) Dy (£, m)[rg (¢, m)b*(m) + (1 = ry (¢, m))b" (m)]
1-p(t,m)b(m)), Vgeg, VteT, VmeM,

Xg (£, M)fg (£ = 1)[pg (£, M) [rg(t,m)c*(m) + (1 — r(t,m))c" (m)]
1 - pg(t,m))c(m)], Vgeg, VteT, Vme M,
€{0,1}, Vgeg, VteT, VmeM.

+(
Cg(t,m) =
+(

o (t,1m)
(5)

Note that in this formulation, we have chosen to model the bud-
getary constraint and the capacity restriction as a global constraint
over all the groups. However, it is quite easy to divide the budget B
into budgets Bg for each group g, and then have a constraint per
group. A similar remark holds for the capacity restriction as well.

In order to incorporate the budgetary constraint and the
capacity restriction in the Markov decision problem, we need to
add the state variables b and c for both the budget and the capacity,
respectively. In each state s=(t, f, K,b,c), these variables
denote the budget and the capacity that are left for the rest of
the survey. At time t, the budget and the capacity after taking
an action ag(m) are decreased by >, ;> . ag(M)bg(t,m) and
> ecg2memlg(M)Ce(t,m), respectively. This can only be done as
long as the budget and the capacity remain non-negative. This
requirement is added to the action set. Hence, the dynamic pro-
gramming backward recursion equations become

V(s) =max {Zngag WDy (t, m)rg(t,m)

gegmeM

+ v (t + ]» ( H [] - ag(m>pg(tv m)lfg) ) (kg(m) - ag(rn)>gcg.md/17 b
meMm ge6

TS ampme- XY ameem)| ©)

gegmeM gegGmeM

with
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) D ag(m)

meM

>0, and c— )" a(m)

gegmeM

As = {ag<m>|ag<m> € {0,1},a5(m) < ky(m
b= "a (m)by(t,m) m)c,(t, m) 0},
i
in which we defined b (t,m) and cy(t,
bl (6, m) = fy(t = 1)pg(t,m) [rg (¢, m)b*(m) + (1 = rg(t, m))b" (m)]
+ (1 = py(t, m))b" (m)

m) to be

and

Ce(t,m) = fy(t = 1)pg(£,m)[rg (£, m)c*(m) + (1 — rg(t,m))c" (m)] + (1

- pg(t7 m))cfc (m)

5. Numerical examples

The previous sections dealt with the theoretical models to solve
the problem of resource allocation within adaptive survey designs.
In this section, we give two numerical examples to illustrate our
methodology.

Our first example shows that the solution of the basic
unconstrained model is indeed optimal, although, counterintuitive.
Consider a survey sample in which all units belong to the
same group g. The set of available interview modes is M =
{Face-to-face, phone}. The survey fieldwork is divided in T=6
time slots. Table 1 gives the contact and participation probabilities
po(t,m) and ry(t,m) as estimated from previous such surveys and
the maximum number of attempts ky(1m).

Note that there is a clear preference for contact at time slots t3
and tg for both interview modes. For participation, on the other
hand, the probabilities indicate more than 50% chance for positive
participation except for an attempt by face-to-face at t3 and by
phone at ts. Therefore, it is not obvious what time slots should
be chosen in order to maximize the total response. Hence, the opti-
mal solution is hard to derive from intuition. Using the algorithm
from Section 3, we obtain the solution depicted in Table 2.

Let us analyze this solution. It looks surprising that for the first
time slot mode F2F is chosen and not Ph, although the immediate
reward is higher for Ph. However, considering the formula given in
(1) for the group average response, we see that the lower the con-
tact probability for the first time slot, the higher the future reward.
Also, the participation probability r,(t;, F2F) is higher than rg(t;, Ph).
The situation changes when r,(t;,F2F) < ry(t1,Ph). For example, take
ro(t1,F2F) = 0.7. As expected, the new optimal solution (see Table 3)
uses phone as first approach interview mode.

The structure of the solution given in Table 2 is motivated by
the choice of kg(m). From t; onward k.{(F2F) =0, therefore phone
is the only interview mode left available. Thus, the choice for time
slots t3, t4, and tg is logical. However, taking action 0 at ts again
looks counterintuitive. Since there are enough attempts left for
mode Ph and there are no budget or capacity constraints, it feels
natural to choose for an attempt to approach. The explanation lies

Table 1
Input data for group g.
Mode Probability  t; ty t3 ts ts te Rg(m)
Face-to-face  pg(t,m) 03 04 08 02 03 07 2
ro(t,m) 09 07 03 08 08 06
Phone pe(t,m) 04 05 09 04 04 08 4
rg(t,m) 08 05 07 06 04 06

Table 2
Optimal solution-original setting.

Time slot ty t, t3 ty ts te Response rate
Mode F2F F2F Ph Ph 0 Ph 0.753
Table 3

Optimal solution-different participation probability at t;.

Time slot t; ty t3 ty ts te Response rate
Mode Ph F2F Ph Ph F2F Ph 0.736
Table 4

Optimal solution-more attempts available.

Time slot t ty t3 ty ts te Response rate
Mode F2F F2F Ph Ph F2F Ph 0.755
Table 5
Input data for group g».
Mode Probability  t; ty t3 ty ts te kg, (M)
Face-to-face  pg, (t,m) 08 06 04 06 04 02 1
Tg, (t,m) 09 07 06 08 05 03
Phone Pg, (t,m) 07 06 05 06 05 04 2
Tg, (t,m) 08 06 05 06 04 02
Table 6

Optimal solution for group g».

Time slot t ty t3 ty ts te

Mode F2F Ph 0 Ph 0 0 0.821

Response rate

in the value of the objective function that is higher in this case
(0.753 compared to 0.752 if the unit is approached).

The optimal solution in Table 2 does not employ all attempts
available for mode Ph. Therefore, we cannot obtain a different solu-
tion if we increase the number of attempts for this mode. On the
other hand, if we increase the number of attempts to 3 for F2F, then
the average response improves (see Table 4). The structure of the
optimal solution does not change much from the original setting.
The only difference appears at ts where this time there are enough
attempts for mode F2F, and selecting this mode leads to higher
response.

Our second example depicts the optimization mechanism for
two groups in the presence of budgetary and capacity constraints.
Consider again the setting from the previous example, where Table
1 has the input data for group g;. Table 5 below gives the corre-
sponding input data for group g».

Approaching group g, for the survey follows a more intuitive
behavior, e.g., high participation probabilities correspond to high
contact probabilities. In the case of single group optimization, the
optimal solution for group g, (see Table 6) starts with the choice
of face-to-face as interview mode at t, since this results in the
highest immediate reward. The same argument governs the entire
structure of the solution.

Now consider a sample of N = 2000 units that can be clustered
in two groups given age, i.e., young and old. The proportion of
the two groups in the survey sample is w= (0.62,0.38). A total
budget B = 4000 monetary units is available to survey the sample
units using two modes, i.e., face-to-face and phone. For simplicity
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Table 7
Optimal solution for groups young and old.

Table 8
Optimal solution for groups young and old for various values of budget.

Time slot t ty t3 ty ts te Response rate

Young F2F F2F Ph F2F F2F Ph 0.757
Oold F2F F2F F2F F2F F2F Ph 0.851

Group

we assume that one attempt costs one monetary unit regardless of
the employed survey mode. Tables 1 and 5 give the estimates for
contact and cooperation probabilities for the two groups, where
g1 denotes the young group and g, the old group, respectively.
For the sake of simplicity we assume that capacity is unlimited.
The overall response rate in this case is 0.793 and the optimal solu-
tion for the two groups is given in Table 7.

The costs incurred with this solution amount to 2841 units for
g7 and 1033 units for g,. The remaining budget could be an indica-
tion that the group response rates have attained their maximum,
given the input probabilities. An easy approach to confirm such a
hypothesis is to optimize for B>4000. The solution does not
change which leads to the conclusion that B =3873 units is suffi-
cient to collect maximum response from the two groups. Evidently,
dropping the constraint on the number of attempts has created a
larger feasible region. This in turn leads to a higher response rate,
0.793 compared to 0.779 obtained if weighting the group response
rates from Tables 2 and 6 with the corresponding values in w. The
increase of 3.8% in the response rate could be explained by the rel-
atively high budget. Fig. 3 depicts the evolution of the response
rate for various levels of budget.

Let us take a look at the changes in the optimal solution (see
Table 8) that cause the two steep jumps in the response rate. As ex-
pected, group g, receives more effort since it yields higher re-
sponse per attempt than group g;. This is particularly interesting
in the case of B = 1250 where the young group is not at all surveyed
whereas the old group receives enough monetary units to yield its
maximum response rate. From a cost perspective there is no differ-
ence between approaching the group at time t; or later. The reason
for the various situations that group g; is not approached at time
slot t; is the corresponding response probability. For example, for
B=2250 at t; there is no difference between the two modes in

B Group Time slot Group Response
response rate

rate

ti t oty ty s tg

1000 g 0 0 0 0 0 0 0 0322
2 F2F F2F O F2F Ph 0 0.849

1250 g 0 0 0 0 0 0 0 0.323
2 F2F F2F F2F F2F F2F Ph 0851

1750 g 0 0 Ph F2F F2F Ph 0.692 0.429
2 0 0 0 0 0 0 0

2250 g 0 0 Ph O O 0 063 0.701
2 F2F 0 0 FF 0 0 0816

2500 g 0 0 Ph O F2F Ph 0688 0.749
o F2F F2F 0 F2F Ph 0 0849

2750 g 0 0 Ph F2F F2F Ph 0692 0.752
2 F2F F2F F2F F2F F2F Ph 0.851

3250 g F2F 0 Ph O O Ph 0745 0.782
2 F2F F2F 0 F2F 0 0 0842

3500 g F2F 0 Ph F2F F2F Ph 0754 0.791
2 F2F F2F F2F F2F F2F Ph 0.851

4000 g F2F F2F Ph F2F F2F Ph 0757 0.793
2 F2F F2F F2F F2F F2F Ph 0851

the cost for an attempt. The yielded response however is higher
when using phone.

A sensitivity analysis is essential when deciding upon a good
value for the necessary budget. Survey designers could decide to
increase slightly the available budget if the corresponding increase
in the response rate is significant. For example, a budget increase of
11% from 2250 to 2500 leads to an expected 6.9% more response.
On the other hand, a similar budget increase from 2500 to 2750
leads to only 0.4% additional expected response.

The algorithm is implemented in C++. Table 9 presents some
computational times for the two-group example. All run times
are for an Intel Xeon L5520 processor with 4 cores. The run times
increase with the increase in the budget. An increase in the budget
expands the feasible region with points that yield a response rate
at least as high as the previous feasible region. Therefore, addi-
tional time is spent on exploring the new points. The significant
drop in the runtime for B = 4000 can be explained by the fact that,
at this point, the sequence of actions that yields maximal group

0.8
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Response rate
0.4
|

0.2

@41 o—o0—o0—o—o0
o

T T T T T T T T T
0 250 500 750 1250 1750

T T
2750 3250 3750 4250 4750

Budget levels

Fig. 3. Response rate evolution for various budget levels.
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Table 9
Computational times.

Budget 1000 1250 1750 2250 2500 2750 3250 3500 4000

Runtime 162 17 527 542 55 555 559 558 19
(s)

response rates is feasible. The algorithm converges then very
quickly to this point.

Other software tools such as Xpress, Maple and R were used in
the attempt to solve the resource allocation problem for adaptive
survey designs as a mathematical program. However, presence of
nonconvexity prohibited convergence to the global optimum. We
suppress presentation of computational times for these tools since
the optimal solution was only a local optimum.

6. Conclusions

In the current paper we have addressed the important problem
of optimal survey designs from a novel perspective of optimal re-
source allocation. This problem is formulated as a nonconvex inte-
ger variable nonlinear resource allocation problem for which
currently only approximations are available. We present an algo-
rithm that solves the problem to optimality by exploiting the
structure of the survey design problem. The results are relevant
to survey organizations which are struggling to obtain high-quality
survey results. Decreasing participation to surveys leads to in-
creased efforts to convince sample units to respond. This in turn
leads to spending higher budgets. Temporary solutions can be
found in replacing expensive designs with cheaper ones. That,
however, has a negative influence on the quality of the survey re-
sults. Therefore, a new perspective needs to be taken.

Learning the behavior patterns, i.e., the impact various survey
features have on the willingness to participate into surveys, for
respondents and nonrespondents, aims at obtaining more insight.
Adaptive survey designs provide the necessary framework to study
these patterns. The main components of an adaptive survey design
are interview modes, number of time slots, number of allowed at-
tempts, and the survey sample divided into homogeneous groups
according to some given criteria (e.g., demographics). Our research
investigates how resource planning can be addressed in the con-
text of adaptive survey designs. Moreover, we optimize the re-
source allocation while taking into account the quality of the
survey results.

We start by analyzing a simpler version of the problem, i.e.,
with no budget or capacity constraints. In this setting optimizing
the resource allocation is translated to choosing a sequence of time
slots such that the response rate is maximized given the contact
and participation probabilities for each group, each time slot, and
all available interview modes. The history of past actions that has
to be considered at each step when choosing an action is a complex
non-linear factor. Section 2 explains why the simplified model is
non-scalable and non-tractable even for small problems.

Nevertheless, the optimal solution can be found. We present a
method that addresses the non-linearity of the problem. The idea
is to use a Markovian decision formulation of the problem, in
which the state space is extended such that the contact failure
probability is included in the state. Thus, there is no need to store
the entire configuration of past actions. Via dynamic programming
the new formulation is solved to optimality. We have tested the
performance of the method by analyzing various survey settings.
Section 5 presents the numerical results, where the optimal solu-
tion is not entirely intuitive.

The main advantages of our method are guaranteed optimality
and short computational times. Thus, the model can be success-

fully used as a basis for representation of more complex practical
settings. For example, Section 4 deals with the necessary changes
in the theoretical framework that adjust our method to accommo-
date cost and capacity constraints.

Statistics bureaus are directly interested in testing adaptive de-
signs as an alternative to classical survey designs. Simulated re-
sults prove the efficiency of our current technique. A direct
comparison between the two designs is not yet possible due to
some practical aspects not fully covered by our method. For exam-
ple, estimation of the input probabilities is not discussed here.
However, a great deal of attention has to be paid to this phase since
the optimization part builds upon this input. Issues such as time-
dependency, history-dependency, and repeated shift between
interview modes have to be taken into account when estimating
the input probabilities.

Flexibility in addressing various objective functions is another
aspect of interest. As shown by (4), the method is applicable as
long as the objective function has an additive property. However,
recent literature on survey methodology argues that aiming for
high response rates influences negatively the bias of the estimators
(see, e.g., [15,11]). Other quality measures, such as low variation in
the group response rates (i.e., representativeness of the respondent
sample), have been indicated as more suitable. Such a quality func-
tion, however, does not posses the additive property which makes
it difficult to approach by the current method.

Future research aims at tackling these issues in order to develop
a model that meets practical needs. Intuitively, taking two survey
designs with similar settings, an adaptive design is expected to
outperform the classical design since more information becomes
available from historical data and the design is tailored such that
the group response rate is optimized.
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