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Abstract—Current wireless channel capacities are closely ap-
proaching the theoretical limit. Hence, further capacity improve-
ments from complex signal processing schemes may only gain
modest improvements. Multi-path communication approaches,
however, combine the benefits of higher performance and reliabil-
ity by exploiting the concurrent usage of multiple communication
networks in areas that are covered by a multitude of wireless
access networks. So far, little is known on how to effectively take
advantage of this potential.

Motivated by this, we consider parallel communication net-
works that handle two types of traffic: foreground and back-
ground. The foreground traffic stream of files should be directed
to the network that requires the least time to transfer the file. The
background streams are always directed to the same network.
It is not clear up front how to select the appropriate network
for each foreground stream. This may be performed by a static
selection policy, based on the expected load of the networks.
However, a dynamic policy that accounts for the network status
may prove more elegant and better performing.

We first propose a dynamic model that optimally assigns the
foreground traffic to the available networks based on the number
of fore- and background streams in both networks. However, in
practice all traffic streams may be served by one application
server. Thus, it may not be feasible to distinguish foreground
from background traffic streams. This limitation is accounted for
in our second, partial observation model that considers limited
observability for dynamic network selection. We compare these
static and dynamic models to each other and to the well-known
Join the Shortest Queue (JSQ) model. The results are illustrated
by extensive numerical experiments.

Index Terms—Concurrent access, Markov decision processes,
optimal control, partial observation model, processor-sharing
queues.

I. I NTRODUCTION

T HE fundamental limit on wireless channel capacity is
closely approached by many of today’s wireless net-

works, which leaves complex signal processing techniques
room for only modest improvements [1]. In areas covered
by a multitude of wireless access networks the concurrent
use of those networks, to which we refer to as concurrent
access, to realize high-capacity enhancements becomes an
interesting option to respond to the sustained growth of wire-
less communications. Concurrent access may aggregate high
capacity communication means over lower capacity networks
to improve the reliability and performance of communication
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towards applications. Consequently, large capacity improve-
ments are within reach because the frequency spectrum is
regulated among various frequency bands and corresponding
communication network standards, and the overall spectrum
usage remains to be relatively low over a wide range of fre-
quencies [2]. Despite the enormous potential for performance
improvement, only little is known about how to fully exploit
this potential.

In the literature on telecommunication systems, the concur-
rent use of multiple network resources in parallel was already
described for a Public Switched Digital Network (PSDN) [3].
Here inverse multiplexing was proposed as a technique to
perform the aggregation of multiple independent information
channels across a network to create a single higher-rate
information channel. Various approaches have appeared to
exploit multiple transmission paths in parallel. For example, by
using multi-element antennas, as adopted by the IEEE802.11n
standard [4], at the physical layer or by switching datagrams
at the link layer [5], [6], and also by using multiple TCP
sessions in parallel to a fileserver [7]. In the latter case,
each available network transports part of the requested data
in a separate TCP session. Previous work has indicated that
downloading from multiple networks concurrently may not
always be beneficial [8], but in general significant performance
improvements can be realized [9], [10], [11]. Under these
circumstances of using a combination of different network
types, in particular the transport layer-approaches, haveshown
their applicability [11] as they allow appropriate link layer
adaptations for each TCP session.

Although the technology seems in place to realize concur-
rent access, many problems arise in practice in the area of
retransmission strategies, resequencing, buffer controltech-
niques, and efficiently scheduling the data traffic among the
various paths accordingly. Application traffic carried by a
reliable transport protocol, such as TCP or SCTP, may also
experience the drawback that, in addition to application layer
interactions, time is consumed by connection setup handshakes
and increasing the congestion window size before finally
getting into steady state. If these actions need to be performed
for multiple connections, the time required to get the TCP
sessions in a state in which efficient scheduling can be properly
based on the monitored session variables (e.g., observed round
trip time, link capacity) may disqualify this method when also
considering its implications on the added complexity to end
nodes.

A main requirement for the widespread use of traffic split-
ting algorithms for concurrent access is that the algorithms are
simple, yet effective. Motivated by this we consider a network
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in which a (file download) application server responds to file
download requests from mobile client devices by choosing
the most suitable network path that connects both devices.
This greatly reduces the complexity in end nodes compared to
other approaches because the monitoring and the scheduling
of individual packets over multiple links for multiple ongoing
sessions per node is not needed. Instead, the application server
is aware of the ongoing transfers in each network, which is
the network status information where our optimization is based
upon. We distinguish two types of network status information;
the first in which the foreground transfers in all networks can
be distinguished from the background and the second in which
only the total number of transfers for each network can be
observed.

It is not clear up front how one can take advantage of
the availability of the different networks in the presence of
background traffic, which is assumed here to consist of other
file downloads from devices that can only use one network.
Hence, there is a need to derive optimal concurrent access
strategies to compare the different assignment strategies.

We study this traffic-selection problem in a queueing the-
oretical context and model the concerned communication
networks as Processor Sharing (PS) nodes and the file transfers
as jobs that need to be processed by the nodes. PS-based
queueing models are applicable to a variety of communication
networks (see [12], [13], [14]), including CDMA 1xEV-DO,
WLAN, and UMTS-HSDPA. In fact, PS models can actually
model file transfers over WLANs accurately [15], hence
taking into account the complex dynamics of the file transfer
application and its underlying protocol-stack, includingtheir
interactions.

In this paper we study dynamic concurrent access strategies,
i.e., adapting to the current network status, that require only
the number of download portions in progress (known by the
application server) and are simple to enforce by deciding upon
the assignment over the networks once. In particular, we study
two models. First, we consider the model in which arriving
jobs can be sent to a network based on the observable fore-
and background streams. Second, a model is considered in
which only the total number of ongoing streams is known,
and Bayesian learning is applied to select the best network,
based on the known state information. We derive the optimal
dynamic network selection policy for the first and second
model and compare the models to a simple static selection
model and the dynamic JSQ-model. The results are illustrated
by extensive numerical experiments.

The paper is organized as follows. In Section II, we formu-
late the concurrent access problem. Then, we continue with the
the dynamic selection model in Section III, followed by the
Bayesian selection model in Section IV. Finally, we compare
the different models in Section V, which are followed by final
conclusions in Section VI.

II. PROBLEM FORMULATION

In this section we describe the concurrent access problem
in greater detail. We modelk mobile networks as PS servers
so that multiple jobs are served simultaneously. Accordingly,

in our model we consider server selection policies instead of
network selection policies. There arek + 1 streams of jobs in
the system. Streami generates a stream of jobs for serveri for
i = 1, . . . , k. Stream 0 generates a stream of jobs for which
the jobs can be sent to either server1 up to serverk. Hence,
streams1 to k can be seen as background traffic, and stream 0
as foreground traffic. We assume that all streams are modeled
by a Poisson process with parametersλ0, . . . , λk, respectively.

After a job enters the system, it demands service from the
system. We assume that the service times follow a general
distribution with mean service timeβi for i = 0, . . . , k. Then,
the occupation ratesρi are defined byρi = λiβi. Based on
the above information, there is a central decision maker that
has to decide on the distribution of the foreground jobs over
the k servers. LetN be the number of foreground jobs in the
system (at all servers). Then, the aim of the decision maker is
to minimizeEN , the expected average number of foreground
jobs in the system. Note that this is directly related to the
sojourn times of the foreground traffic.

In the sequel we will study two dynamic models: the optimal
server selection model with full and partial observability.

III. T HE DYNAMIC SERVER SELECTION MODEL

In this section we allow the decision maker to dynamically
send the jobs to any server. To find the optimal policy for mak-
ing this decision, we model this as a Markov decision problem.
To this end, let the state spaceS = N2k

0 = {0, 1, 2, . . .}2k.
A tuple s = (x1, . . . , xk, y1, . . . , yk) ∈ S denotes that there
are xi foreground jobs andyi background jobs at serveri
for i = 1, . . . , k. For each job, the set of actions is given by
A = {1, . . . , k}, wherea ∈ A denotes sending the job to
servera. When actiona is chosen in states, there are two
possible events in the system; first, an arrival of a job can
occur with rateλi or a job can finish his service with rate
µi for i = 0, . . . , k. The transition ratesp are thus given by
p(s, a, s′) as follows:p(s, a, s′)

=































λ0, if s′ = s + ea,

λi, if s′ = s + ei+k for i = 1, . . . , k,

µ0, if s′ = s − ei andxi > 0 for i = 1, . . . , k,

µi, if s′ = s − ei+k andyi > 0 for i = 1, . . . , k,

0, otherwise,

for s, s′ ∈ S and a ∈ A, whereei is the zero-vector with a
one at thei-th entry. Since we are interested in the number
of foreground jobs in the system, we take the cost functionc
equal toc(s) = x1 + · · · + xk. The tuple(S,A, p, c) defines
the Markov decision problem.

Next, we uniformize the system (see Section 11.5 of [16]).
To this end, we assume that the uniformization constant
λ0 + · · · + λk +

∑k

i=1
max{µ0, µi} = 1; we can always get

this by scaling. Uniformizing is equivalent to adding dummy
transitions (from a state to itself) such that the rate out of
each state is equal to 1; then we can consider the rates to be
transition probabilities.

Define a deterministic policyπ as a function fromS to A,
i.e., π(s) ∈ A for all s ∈ S. Note that the optimal policy can
be found within this class (see [17]). Letuπ

t (s) denote the total
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expected costs up to timet when the system starts in states
under policyπ. Note that for any stable and work-conserving
policy, the Markov chain satisfies the unichain condition, so
that the average expected costsg(π) = limt→∞ uπ

t (s)/t is
independent of the initial states (see Proposition 8.2.1 of [16]).
The goal is to find a policyπ∗ that minimizes the long-term
average costs, thusg = minπ g(π).

Let V (s) be a real-valued function defined on the state
space. This function will play the role of the relative value
function, i.e., the asymptotic difference in total costs that
results from starting the process in states instead of some
reference state. The long-term average optimal actions are
a solution of the optimality equation (in vector notation)
g + V = TV , whereT is the dynamic programming operator
acting onV defined as follows

TV (s) =

k
∑

i=1

xi + λ0 min
a∈{1,...,k}

{V (s + ea)} +

k
∑

i=1

λiV (s + ei+k) +
k

∑

i=1

xi

xi+yi

µ0V (s − ei) +

k
∑

i=1

yi

xi+yi

µiV (s − ei+k) +

(

1 − λ0 −

k
∑

i=1

[

λi + xi

xi+yi
µ0 + yi

xi+yi
µi

]

)

V (s).

The first term in the expressionTV (s) models the direct
costs, the second term deals with the arrivals of foreground
jobs, whereas the third term deals with the background jobs.
The fourth and fifth terms concern service completions for
foreground and background jobs, respectively. The last line is
the uniformization constant.

The optimality equationg + V = TV is hard to solve
analytically in practice. Alternatively, the optimal actions can
also be obtained by recursively definingVl+1 = TVl for
arbitraryV0. For l → ∞, the maximizing actions converge to
the optimal ones (for existence and convergence of solutions
and optimal policies we refer to [16]). Table I shows the
results when the above Markov decision problem is solved
by iteratingVl+1 = TVl.

Note that it is fairly straightforward to extend the dynamic
programming operator to account for other service-time dis-
tributions as well. For example, one could consider phase-
type service distributions, which are dense in the class of all
non-negative distributions [18]. This can be done by adding
extra variables to the state space to count the number of
jobs in all the phases. Thus, for an Erlang-n distribution,
we would have a2k · n-dimensional state space, as well as
for a hyperexponential(n) service distribution. We have also
done experiments with an Erlang-2 and a hyperexponential(2)
distribution. The results are comparable to the results in
Table I.

IV. T HE PARTIAL OBSERVATION MODEL

The dynamic server selection model uses a state description
(x1, . . . , xk, y1, . . . , yk) with 2k entries. However, in practice,

distinguishing the foreground traffic from the background traf-
fic might not be feasible. In these cases, one can only observe
the state(z1, . . . , zk) with zi = xi +yi for i = 1, . . . , k. Now,
the dynamic control policy that we derived in the previous
section cannot be applied straightforwardly. To apply the
control policy one needs to create a mapping from(z1, . . . , zk)
to (x1, . . . , xk, y1, . . . , yk), so that (an estimate of the) full
information is recovered. Note that it is not sufficient to
create a mapping solely based on(z1, . . . , zk) at each decision
epoch, since it does not use the information contained in the
sample path, i.e., many sample paths can lead to the same
state(z1, . . . , zk). Therefore, we will use Bayesian learning
that takes into account the complete history of states in the
estimation procedure.

We shall callz = (z1, . . . , zk) ∈ Nk
0 the observation state.

In order to learn about the division between the number of
foreground and background jobs, we will denote byui(n) the
probability that at serveri there aren foreground jobs for
i = 1, . . . , k. The probability distributionui will serve the pur-
pose of information about the states that cannot be observed;
hence,u = (u1, . . . , uk) is called the information state. Note
that the information state space is of high dimension, namely
∏k

i=1
{ui ∈ [0, 1]N0 |

∑

x∈N0
ui(x) = 1}.

Based on the observation and information states, we con-
struct a state space for the Bayesian dynamic program con-
sisting of the vectorss = (z, u). Note that every arrival and
departure gives the system information on how to update the
information state. Suppose that states is given and that an
arrival of foreground job that is admitted to serveri occurs.
The new statesafi

is then given bysafi
= (z + ei, u

′) where
u′

i(x) = ui(x − 1) for x > 0 and u′
i(0) = 0, and where

u′
j(x) = uj(x) for j 6= i. In case of arrival of a background

job to serveri, we have a new statesabi
= (z + ei, u).

In case of departures, we have a similar state transformation.
When a foreground job leaves serveri, then we have corre-
sponding statessdfi

= (z − ei, u
′) with u′

i(x) = ui(x + 1)
for x ≥ 0. Similarly, when a background job leaves serveri,
then we havesdbi

= (z − ei, u). Naturally, these transitions
cannot be observed, so we take the expectation with respect to
the probability distributionu to average over all sample paths.
This gives a new dynamic programming operator in which
learning is incorporated. This is given by

TV (s) =
∑

x1∈N0

· · ·
∑

xk∈N0

u1(x1) · · ·uk(xk)
[

k
∑

i=1

xi +

λ0 min{V (saf1
), . . . , V (safk

)} +

k
∑

i=1

λiV (sabi
) +

k
∑

i=1

xi

zi

µ0V (sdfi
) +

k
∑

i=1

zi−xi

zi

µiV (sdbi
) +

(

1 − λ0 −

k
∑

i=1

[

λi + xi

zi

µ0 + zi−xi

zi

µi

]

)

V (s)
]

.

V. COMPARISON OF THE MODELS

In this section we compare the different models with each
other. For illustrative purposes we restrict ourselves to asystem
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TABLE I
DYNAMIC SERVER SELECTION: THE AVERAGE NUMBER OF FOREGROUND JOBSEN

ρ1/ρ2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 0.101 0.102 0.103 0.104 0.105 0.107 0.108 0.109 0.110 0.111
0.1 0.102 0.107 0.109 0.112 0.114 0.117 0.119 0.121 0.123 0.124
0.2 0.103 0.109 0.116 0.120 0.123 0.127 0.131 0.135 0.138 0.141
0.3 0.104 0.112 0.120 0.128 0.133 0.139 0.145 0.152 0.158 0.163
0.4 0.105 0.114 0.123 0.133 0.144 0.152 0.161 0.171 0.181 0.191
0.5 0.107 0.117 0.127 0.139 0.152 0.167 0.180 0.195 0.213 0.231
0.6 0.108 0.119 0.131 0.145 0.161 0.180 0.202 0.225 0.254 0.289
0.7 0.109 0.121 0.135 0.152 0.171 0.195 0.225 0.264 0.314 0.384
0.8 0.110 0.123 0.138 0.158 0.181 0.213 0.254 0.314 0.406 0.562
0.9 0.111 0.124 0.141 0.163 0.191 0.231 0.289 0.384 0.562 0.963

ρ0 = 0.1 andβi = 1 for i = 0, 1, 2

ρ1/ρ2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 0.551 0.571 0.596 0.625 0.658 0.698 0.743 0.796 0.854 0.921
0.1 0.571 0.608 0.639 0.676 0.719 0.771 0.832 0.906 0.995 1.104
0.2 0.596 0.639 0.687 0.734 0.790 0.858 0.943 1.049 1.187 1.372
0.3 0.625 0.676 0.734 0.802 0.875 0.967 1.085 1.243 1.465 1.797
0.4 0.658 0.719 0.790 0.875 0.980 1.106 1.277 1.523 1.909 2.557
0.5 0.698 0.771 0.858 0.967 1.106 1.293 1.556 1.975 2.737 4.112
0.6 0.743 0.832 0.943 1.085 1.277 1.556 2.003 2.844 4.671−
0.7 0.796 0.906 1.049 1.243 1.523 1.975 2.844 5.077− −

0.8 0.854 0.995 1.187 1.465 1.909 2.737 4.671 − − −

0.9 0.921 1.104 1.372 2.557 2.557 4.112 − − − −

ρ0 = 0.5 andβi = 1 for i = 0, 1, 2

ρ1/ρ2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 1.201 1.283 1.384 1.511 1.672 1.883 2.167 2.571 3.187 4.051
0.1 1.283 1.400 1.530 1.696 1.914 2.212 2.642 3.308 4.393 5.790
0.2 1.384 1.530 1.712 1.936 2.245 2.694 3.405 4.640 6.636−
0.3 1.511 1.696 1.936 2.263 2.728 3.477 4.840 7.391− −

0.4 1.672 1.914 2.245 2.728 3.512 4.971 8.020 − − −

0.5 1.883 2.212 2.694 3.477 4.971 8.317 − − − −

0.6 2.167 2.642 3.405 4.840 8.020 − − − − −

0.7 2.571 3.308 4.640 7.391 − − − − − −

0.8 3.187 4.393 6.636 − − − − − − −

0.9 4.051 5.790 − − − − − − − −

ρ0 = 0.9 andβi = 1 for i = 0, 1, 2

with two mobile networks. We first consider the static server
selection model and the dynamic server selection model. For
the static model we assume that the decision maker has control
over a parameterα ∈ [0, 1] that determines the fraction of
foreground jobs that are sent to server 1 (and thus a fraction
1 − α is sent to server 2). For convenience, denoteα1 = α
and α2 = 1 − α. Then serveri has an effective occupation
rate αiρ0 + ρi for i = 1, 2. Note that for stability purposes
we require thatρ0 < (1 − ρ1) + (1 − ρ2). Moreover, the
two servers become independent, and from classical queueing
theory results we have thatEN =

α1ρ0

1 − (α1ρ0 + ρ1)
+

α2ρ0

1 − (α2ρ0 + ρ2)
.

Clearly, one can easily find the optimal value forα by
minimizing the above expression. We have done this for
several values ofρi for i = 1, 2. Table II shows the gain
in using the optimal dynamic policy versus the optimal static
policy computed as the relative differenceENstatic−ENdynamicENstatic

· 100%.

The results show that the gain is greatest when the system
is balanced, i.e., whenρ1 and ρ2 are comparable. When the
system is more skewed, i.e.,ρ1 andρ2 differ significantly from

each other, the gains decrease. It is apparently the case that in
a balanced system, the performance is more sensitive to the
decisions that are made. Since the static policy is completely
independent of any information in the system, it does not make
the subtle choices that the dynamic policy makes.

We compare our dynamic policy also with the ‘join the
shortest queue’ (JSQ) policy. Upon arrival of a job, the JSQ
policy selects the server with the least number of jobs, i.e., the
policy selectsargmini=1,2{xi +yi}. Note that the JSQ policy
can be used in absence of detailed information on the different
job types. It only needs the total number of jobs present at each
server to make a decision. Hence, this policy can be used
when only the total number of transfers is given. Table III
depicts the gain of the dynamic server selection policy over
the JSQ policy. The table shows that the performance of the
JSQ policy is very good for low to moderate occupation rates
of the servers. The policy has a performance that is within
1% of the performance of the dynamic server selection policy.
However, when the occupation rates increase, the discrepancy
in performance between the JSQ policy and the dynamic server
selection policy grows larger. Note that these experimentswere
done forβi = 1 for i = 0, 1, 2. When the service rates of the
different networks are chosen to be more skewed instead of
comparable, the JSQ policy has even worse performance.
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TABLE II
COMPARISON: GAIN IN STATIC VERSUS DYNAMIC SERVER SELECTION

ρ1/ρ2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 4.40% 8.32% 8.10% 6.77% 5.38% 3.96% 2.72% 1.70% 0.84% 0.18%
0.1 8.32% 10.03% 12.47% 11.96% 9.60% 7.25% 5.04% 3.20% 1.68% 0.63%
0.2 8.10% 12.47% 14.60% 17.06% 15.93% 12.35% 8.92% 5.82% 3.32% 1.37%
0.3 6.77% 11.96% 17.06% 20.51% 22.32% 20.05% 14.94% 10.18% 6.02% 2.69%
0.4 5.38% 9.60% 15.93% 22.32% 26.58% 28.13% 23.92% 16.75% 10.20% 4.61%
0.5 3.96% 7.25% 12.35% 20.05% 28.13% 33.21% 34.94% 27.95% 17.61% 8.32%
0.6 2.72% 5.04% 8.92% 14.94% 23.92% 34.94% 41.60% 42.36% 30.92%15.13%
0.7 1.70% 3.20% 5.82% 10.18% 16.75% 27.95% 42.36% 51.41% 51.38%30.22%
0.8 0.84% 1.68% 3.32% 6.02% 10.20% 17.61% 30.92% 51.38% 64.38% 62.51%
0.9 0.18% 0.63% 1.37% 2.69% 4.61% 8.32% 15.13% 30.22% 62.51% 107.69%

ρ0 = 0.1 andβi = 1 for i = 0, 1, 2

ρ1/ρ2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 21.14% 24.64% 27.72% 29.82% 31.06% 30.96% 29.28% 24.94% 17.08% 8.58%
0.1 24.64% 26.51% 30.05% 32.90% 34.90% 35.73% 35.17% 32.32% 25.42% 13.22%
0.2 27.72% 30.05% 32.26% 35.83% 38.60% 40.53% 41.21% 39.73% 34.78% 21.54%
0.3 29.82% 32.90% 35.83% 38.56% 42.27% 45.34% 47.23% 47.49% 44.77% 35.30%
0.4 31.06% 34.90% 38.60% 42.27% 45.58% 50.00% 53.48% 55.66% 55.91% 54.41%
0.5 30.96% 35.73% 40.53% 45.34% 50.00% 54.69% 59.82% 64.52% 70.31% 106.04%
0.6 29.28% 35.17% 41.21% 47.23% 53.48% 59.82% 66.42% 74.57% 7.04% −

0.7 24.94% 32.32% 39.73% 47.49% 55.66% 64.52% 74.57% 96.99%− −

0.8 17.08% 25.42% 34.78% 44.77% 55.91% 70.31% 7.04% − − −

0.9 8.58% 13.22% 21.54% 35.30% 54.41% 106.04% − − − −

ρ0 = 0.5 andβi = 1 for i = 0, 1, 2

ρ1/ρ2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 36.21% 40.10% 43.65% 46.75% 49.46% 51.72% 53.66% 55.15% 56.27% 25.43%
0.1 40.10% 42.85% 46.81% 50.60% 54.07% 57.43% 60.87% 65.18% 76.24% 141.79%
0.2 43.65% 46.81% 50.20% 54.64% 59.09% 63.76% 69.47% 81.01% 141.11% −

0.3 46.75% 50.60% 54.64% 59.07% 64.56% 70.96% 81.64% 132.23% − −

0.4 49.46% 54.07% 59.09% 64.56% 70.83% 80.59% 121.92% − − −

0.5 51.72% 57.43% 63.76% 70.96% 80.59% 116.41% − − − −

0.6 53.66% 60.87% 69.47% 81.64% 121.92% − − − − −

0.7 55.15% 65.18% 81.01% 132.23% − − − − − −

0.8 56.27% 76.24% 141.11% − − − − − − −

0.9 25.43% 141.79% − − − − − − − −

ρ0 = 0.9 andβi = 1 for i = 0, 1, 2

Finally, we compare the Bayesian learning model to the
dynamic server selection model. Note that the implementation
of the Bayesian model is less straightforward than the other
models that we have studied. The state space of the Bayesian
model is not discrete due to the probability distributions that
are part of the state space. Hence, we have restricted the possi-
ble values of the probability distributions to an equidistant grid
on the interval[0, 1]. In doing so, the state space of the model
becomes discrete and easier to implement with the sacrifice
of a little accuracy. In our experiments, we chose to divide
the interval [0, 1] into 20 equidistant segments and adjusted
the transitions of the probabilities accordingly such thatthe
transitions were mapped back onto the grid. In Table IV one
can see that the performance of the Bayesian model is superior
to the JSQ policy. The optimal policy of the Bayesian model
is within 1% of optimality (compared to the full information
dynamic server selection model). For higher occupancy rates,
the performance of the Bayesian model becomes significantly
better than the performance of the JSQ policy. This has to
do with the fact that the Bayesian model uses the complete
history of actions to estimate the number of foreground and
background jobs at the server. Even when the service rate
parameters are chosen more skewed, the Bayesian model has
a performance that is (usually) within 10% of optimality.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have studied the concurrent access problem
in which a multi-antenna device can connect to multiple
mobile networks. We answer the question how jobs of the
device can utilize the networks in the best way. We do this
by studying two settings: a setting in which different job
types can be distinguished, and the setting in which only
the total number of jobs at each server can be observed. For
the former, we compare two policies: a static server selection
policy (which does not need state information, but only the
average server occupancy) and a dynamic server selection
policy. The performance of the dynamic server selection policy
is significantly better than the static policy. For the latter
setting, we compare a join the shortest queue (JSQ) policy,
and a Bayesian learning policy. Both policies have very good
performance when the occupancy rates at the servers are low
to moderate. However, when the occupancy rates grow larger,
the performance of the Bayesian learning policy becomes
significantly better than the JSQ policy.

There are a number of interesting avenues of further re-
search. First, it would be interesting to study a job-split model
in which jobs can be split and sent simultaneously over the
different networks. The model is highly complex due to the
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TABLE III
COMPARISON: GAIN IN JOIN THE SHORTEST QUEUE VERSUS DYNAMIC SERVER SELECTION

ρ1/ρ2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.1 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.02% 0.04% 0.05% 0.12%
0.2 0.00% 0.01% 0.01% 0.03% 0.04% 0.04% 0.05% 0.07% 0.12%−

0.3 0.00% 0.01% 0.03% 0.03% 0.05% 0.07% 0.08% 0.11% − −

0.4 0.00% 0.01% 0.04% 0.05% 0.05% 0.07% 0.10% − − −

0.5 0.00% 0.01% 0.04% 0.07% 0.07% 0.08% − − − −

0.6 0.00% 0.02% 0.05% 0.08% 0.10% − − − − −

0.7 0.00% 0.04% 0.07% 0.11% − − − − − −

0.8 0.00% 0.05% 0.12% − − − − − − −

0.9 0.00% 0.12% − − − − − − − −

ρ0 = 0.1 andβi = 1 for i = 0, 1, 2

ρ1/ρ2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 0.00% 0.00% 0.02% 0.06% 0.10% 0.14% 0.15% 0.19% 0.21% 0.24%
0.1 0.00% 0.02% 0.04% 0.09% 0.15% 0.21% 0.26% 0.32% 0.34% 0.85%
0.2 0.02% 0.04% 0.07% 0.13% 0.21% 0.30% 0.40% 0.50% 0.79%−

0.3 0.06% 0.09% 0.13% 0.18% 0.27% 0.39% 0.55% 0.75% − −

0.4 0.10% 0.15% 0.21% 0.27% 0.34% 0.47% 0.68% − − −

0.5 0.14% 0.21% 0.30% 0.39% 0.47% 0.58% − − − −

0.6 0.15% 0.26% 0.40% 0.55% 0.68% − − − − −

0.7 0.19% 0.32% 0.50% 0.75% − − − − − −

0.8 0.21% 0.34% 0.79% − − − − − − −

0.9 0.24% 0.85% − − − − − − − −

ρ0 = 0.5 andβi = 1 for i = 0, 1, 2

ρ1/ρ2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 0.00% 0.02% 0.08% 0.22% 0.47% 0.87% 1.54% 2.73% 5.18% 11.87%
0.1 0.02% 0.04% 0.11% 0.25% 0.53% 1.05% 2.03% 4.15% 10.36% 28.39%
0.2 0.08% 0.11% 0.18% 0.32% 0.61% 1.25% 2.75% 7.46% 25.02% −

0.3 0.22% 0.25% 0.32% 0.43% 0.70% 1.49% 4.51% 19.51% − −

0.4 0.47% 0.53% 0.61% 0.70% 0.93% 2.44% 14.81% − − −

0.5 0.87% 1.05% 1.25% 1.49% 2.44% 12.77% − − − −

0.6 1.54% 2.03% 2.75% 4.51% 14.81% − − − − −

0.7 2.73% 4.15% 7.46% 19.51% − − − − − −

0.8 5.18% 10.36% 25.02% − − − − − − −

0.9 11.87% 28.39% − − − − − − − −

ρ0 = 0.9 andβi = 1 for i = 0, 1, 2

dependence of the networks as a result of splitting a job. It is
reasonable to think that a mixture of a light-traffic and a heavy-
traffic approximation could lead to good results. Second, we
assume that the traffic streams are stationary. However, it is
more realistic to assume that they are not and are governed by
a Markov modulated Poisson process (of which the parameters
are generally not known). In combination with the statistical
learning algorithm this addition could create an automated
system in which the decision making is done autonomously.
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