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Abstract—Current wireless channel capacities are closely ap- towards applications. Consequently, large capacity iwvgro
proaching the theoretical limit. Hence, further capacity improve- ments are within reach because the frequency spectrum is
ments from complex signal processing schemes may only gaineqjated among various frequency bands and corresponding

modest improvements. Multi-path communication approachs, icati work standard d th I ¢
however, combine the benefits of higher performance and rebil- ~ €OMmMmunication network standaras, and the overall spectrum

ity by exploiting the concurrent usage of multiple communiation Usage remains to be relatively low over a wide range of fre-
networks in areas that are covered by a multitude of wireless quencies [2]. Despite the enormous potential for perforrean
access network§. So far,_llttle is known on how to effectivgltake improvement, only little is known about how to fully exploit
advantage of this potential. this potential.

Motivated by this, we consider parallel communication net- . L
works that handle two types of traffic: foreground and back- In the literature on telecommunication systems, the cencur

ground. The foreground traffic stream of files should be direted ent use of multiple network resources in parallel was alyea
to the network that requires the least time to transfer the file. The described for a Public Switched Digital Network (PSDN) [3].

background streams are always directed to the same network. Here inverse multiplexing was proposed as a technique to
It is not clear up front how to select the appropriate network perform the aggregation of multiple independent inforoati

for each foreground stream. This may be performed by a static h | twork t t inale hiah t
selection policy, based on the expected load of the networks channels across a network to create a singie higher-rate

However, a dynamic policy that accounts for the network stass information channel. Various approaches have appeared to
may prove more elegant and better performing. exploit multiple transmission paths in parallel. For exénpy

We first propose a dynamic model that optimally assigns the ysing multi-element antennas, as adopted by the IEEE802.11
foreground traffic to the available networks based on the nurber standard [4], at the physical layer or by switching datagram

of fore- and background streams in both networks. However, ri . . .
practice all traffic streams may be served by one application &t the link layer [5], [6], and also by using multiple TCP

server. Thus, it may not be feasible to distinguish foregrond ~Sessions in parallel to a fileserver [7]. In the latter case,
from background traffic streams. This limitation is accounted for ~each available network transports part of the requestea dat

in our second, partial observation model that considers linted in a separate TCP session. Previous work has indicated that

observability for dynamic network selection. We compare these 4qynjoading from multiple networks concurrently may not

static and dynamic models to each other and to the W_eII-known always be beneficial [8], but in general significant perfonce

Join the Shortest Queue (JSQ) model. The results are illusated ¢ ! .

by extensive numerical experiments. improvements can be realized [9], [10], [11]. Under these
. circumstances of using a combination of different network

Index Terms—Concurrent access, Markov decision processes, . .

optimal control, partial observation model, processor-shring typgs, In Pa”"?%“af the transport Iayer-approac_hes, _Bhwn

queues. their applicability [11] as they allow appropriate link ky

adaptations for each TCP session.

Although the technology seems in place to realize concur-
rent access, many problems arise in practice in the area of
HE fundamental limit on wireless channel CapaCity i%transmission Strategiesl resequencing, buffer comdacit-

closely approached by many of today’s wireless nefiques, and efficiently scheduling the data traffic among the
works, which leaves complex signal processing techniqu@srious paths accordingly. Application traffic carried by a
room for only modest improvements [1]. In areas covergd|iable transport protocol, such as TCP or SCTP, may also
by a multitude of wireless access networks the concurresifperience the drawback that, in addition to applicatigela
use of those networks, to which we refer to as concurrgteractions, time is consumed by connection setup hakesha
access, to realize high-capacity enhancements becomesagfl increasing the congestion window size before finally
interesting option to respond to the sustained growth oéwirgetting into steady state. If these actions need to be peeor
less communications. Concurrent access may aggregate fgfhmultiple connections, the time required to get the TCP
capacity communication means over lower capacity networkgssjons in a state in which efficient scheduling can be pisope
to improve the reliability and performance of communicatiopased on the monitored session variables (e.g., obserued ro
trip time, link capacity) may disqualify this method whesal
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in which a (file download) application server responds to file@ our model we consider server selection policies instefad o
download requests from mobile client devices by choosimgetwork selection policies. There aket 1 streams of jobs in
the most suitable network path that connects both devic#se system. Strearhgenerates a stream of jobs for servéor
This greatly reduces the complexity in end nodes comparedite- 1,..., k. Stream O generates a stream of jobs for which
other approaches because the monitoring and the scheduthmg jobs can be sent to either serteup to serverk. Hence,
of individual packets over multiple links for multiple onigpg  streamsl to k& can be seen as background traffic, and stream 0
sessions per node is not needed. Instead, the applicatioer seas foreground traffic. We assume that all streams are modeled
is aware of the ongoing transfers in each network, which I/ a Poisson process with parametgss. . ., Ax, respectively.
the network status information where our optimization isdzth ~ After a job enters the system, it demands service from the
upon. We distinguish two types of network status informatio system. We assume that the service times follow a general
the first in which the foreground transfers in all networka cadistribution with mean service timg; for i =0, ..., k. Then,
be distinguished from the background and the second in whittte occupation rateg; are defined byy; = \;5;. Based on
only the total number of transfers for each network can like above information, there is a central decision maketr tha
observed. has to decide on the distribution of the foreground jobs over
It is not clear up front how one can take advantage difie k servers. LetV be the number of foreground jobs in the
the availability of the different networks in the presende wystem (at all servers). Then, the aim of the decision maker i
background traffic, which is assumed here to consist of otierminimizelEN, the expected average number of foreground
file downloads from devices that can only use one netwoibs in the system. Note that this is directly related to the
Hence, there is a need to derive optimal concurrent accesgourn times of the foreground traffic.
strategies to compare the different assignment strategies In the sequel we will study two dynamic models: the optimal
We study this traffic-selection problem in a queueing thé&erver selection model with full and partial observahility
oretical context and model the concerned communication
networks as Processor Sharing (PS) nodes and the file transfe  |ll. THE DYNAMIC SERVER SELECTION MODEL
as jobs that need to be processed by the nodes. PS-based this section we allow the decision maker to dynamically
queueing models are applicable to a variety of communioatigend the jobs to any server. To find the optimal policy for mak-
networks (see [12], [13], [14]), including CDMA 1xEV-DO, ing this decision, we model this as a Markov decision problem
WLAN, and UMTS-HSDPA. In fact, PS models can actuallyfo this end, let the state space= N2¥ = {0,1,2,...}%".

model file transfers over WLANs accurately [15], henca tuple s = (z1,...,24,y1,...,ys) € S denotes that there
taking into account the complex dynamics of the file transfefe ; foreground jobs andj; background jobs at server
application and its underlying protocol-stack, includithgir for ; = 1,...,%. For each job, the set of actions is given by
interactions. A = {1,...,k}, wherea € A denotes sending the job to

In this paper we study dynamic concurrent access strategissrvera. When actiona is chosen in state, there are two
i.e., adapting to the current network status, that requillg o possible events in the system; first, an arrival of a job can
the number of download portions in progress (known by thgecur with rate); or a job can finish his service with rate
application server) and are simple to enforce by decidirmpupy; for i = 0, ..., k. The transition ratep are thus given by
the assignment over the networks once. In particular, waystup(s, a, s’) as follows:p(s, a, s')
two models. First, we consider the model in which arriving

H ! __
jobs can be sent to a network based on the observable fore- Ao, 1 s"=s+eq,

and background streams. Second, a model is considered in i, ifs'=s+eqyfori=1,...k,
which only the total number of ongoing streams is known, = g, if s =s—e¢; andz; >0fori=1,...,k,
and Bayesian learning is applied to select the best network, i, if s’ =s—epandy; >0fori=1,... k,

based on the known state information. We derive the optimal
dynamic network selection policy for the first and second
model and compare the models to a simple static selectiton s, s’ € S anda € A, wheree; is the zero-vector with a
model and the dynamic JSQ-model. The results are illugtratene at thei-th entry. Since we are interested in the number
by extensive numerical experiments. of foreground jobs in the system, we take the cost function
The paper is organized as follows. In Section Il, we formequal toc(s) = z1 + - -- + x;. The tuple(S, A, p, c) defines
late the concurrent access problem. Then, we continue kgth the Markov decision problem.
the dynamic selection model in Section IlI, followed by the Next, we uniformize the system (see Section 11.5 of [16]).
Bayesian selection model in Section IV. Finally, we compart this end, we assume that the uniformization constant
the different models in Section V, which are followed by finaho + - - - + A + S~ max{y0, s} = 1; we can always get
conclusions in Section VI. this by scaling. Uniformizing is equivalent to adding dummy
transitions (from a state to itself) such that the rate out of
each state is equal to 1; then we can consider the rates to be
transition probabilities.
In this section we describe the concurrent access problenDefine a deterministic policy as a function fromS to A,
in greater detail. We modél mobile networks as PS servers.e., 7(s) € A for all s € S. Note that the optimal policy can
so that multiple jobs are served simultaneously. Accorglingbe found within this class (see [17]). Le (s) denote the total

0, otherwise

Il. PROBLEM FORMULATION
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expected costs up to timewhen the system starts in state distinguishing the foreground traffic from the backgroursd-t

under policyr. Note that for any stable and work-conservindic might not be feasible. In these cases, one can only observe

policy, the Markov chain satisfies the unichain conditiom, sthe state(z1, ..., z;) with z; = z; +y; fori = 1,... k. Now,

that the average expected cogisr) = lim;_.. u](s)/t is the dynamic control policy that we derived in the previous

independent of the initial state(see Proposition 8.2.1 of [16]). section cannot be applied straightforwardly. To apply the

The goal is to find a policyr* that minimizes the long-term control policy one needs to create a mapping filem. . ., z)

average costs, thus= min, g(r). to (z1,...,%k,y1,-..,Yx), SO that (an estimate of the) full
Let V(s) be a real-valued function defined on the stat@formation is recovered. Note that it is not sufficient to

space. This function will play the role of the relative valuereate a mapping solely based @, . .., z;) at each decision

function, i.e., the asymptotic difference in total coststth epoch, since it does not use the information contained in the

results from starting the process in staténstead of some sample path, i.e., many sample paths can lead to the same

reference state. The long-term average optimal actions atate(zy,..., zx). Therefore, we will use Bayesian learning

a solution of the optimality equation (in vector notationjhat takes into account the complete history of states in the

g+ V =TV, whereT is the dynamic programming operatorestimation procedure.

acting onV defined as follows We shall callz = (z1,...,2;) € N} the observation state.

In order to learn about the division between the number of

foreground and background jobs, we will denotedyyn) the

probability that at servei there aren foreground jobs for

i =1,..., k. The probability distribution:; will serve the pur-

k
TV (s) = Z i + Ao CLe{rgnn k}{V(s +ea)t +

i=1

k k
Z NV (s + eipn) + Z zfﬁy.ro(S —ei) + pose of information abt_)ut the states that cannot be observed
=1 = henceu = (uq,...,ux) is called the information state. Note
k that the information state space is of high dimension, ngmel
) k
D V(s —eiyn) + [T {wi € 10,18 | Ypen, wile) =1}
i=1 Based on the observation and information states, we con-
k struct a state space for the Bayesian dynamic program con-
(1 — o= Y [N+ o + 74 m])V(S). sisting of the vectors = (z,u). Note that every arrival and
i=1 departure gives the system information on how to update the

The first term in the expressiof’V(s) models the direct Information state. Suppose that states given and that an
costs, the second term deals with the arrivals of foregroufiffival of foreground job that is admitted to serveoccurs.
jobs, whereas the third term deals with the background jobd1e New statey, is then given bys,s, = (2 + ¢;,u’) where
The fourth and fifth terms concern service completions féf(#) = wi(z —1) for z > 0 and u;(0) = 0, and where

foreground and background jobs, respectively. The lastiin ¢;(%) = u;(z) for j # i. In case of arrival of a background
the uniformization constant. job to serveri, we have a new state,,, = (z + €;, u).
The optimality equationy + V' = TV is hard to solve In case of departures, we have a similar state transformatio

analytically in practice. Alternatively, the optimal amtis can When a foreground job leaves serverthen we have corre-

also be obtained by recursively definiig,, = TV; for Sponding statesq, = (z — e;,u') with u;(2) = u(z + 1)

arbitrary ;. For — oo, the maximizing actions converge tof0f # = 0. Similarly, when a background job leaves serier

the optimal ones (for existence and convergence of solstidien We havesa, = (z — ¢;, u). Naturally, these transitions

and optimal policies we refer to [16]). Table | shows th&annot be observed, so we take the expectation with respect t

results when the above Markov decision problem is solvé@ probability distributioru to average over all sample paths.

by iteratingVi1 = TV;. This gives a new dynamlc_pr_ogr_ammlng operator in which
Note that it is fairly straightforward to extend the dynamié€arning is incorporated. This is given by

programming operator to account for other service-time dis k

tributions as well. For example, one could consider phase- TV(s)= »  --- »_ ul(xl)---uk(mk)[z:xi +

type service distributions, which are dense in the clasdlof a z1€Ng  z,ENg i=1

non-negative distributions [18]. This can be done by adding k

extra variables to the state space to count the number of
jobs in all the phases. Thus, for an Erlangdistribution,

we would have &k - n-dimensional state space, as well as
for a hyperexponential( service distribution. We have also
done experiments with an Erlang-2 and a hyperexponential(2
distribution. The results are comparable to the results in
Table I.

IV. THE PARTIAL OBSERVATION MODEL

)\O min{V(safl), ) V(safk)} + Z )‘zV(Sabq) +
i=1
k
> LpoV(sar) + Y EE iV (san,) +
=1 i=1
k
(1 — Ao — Z [Ni 4 Zhpo + 2T ui])V(s)}.

=1

V. COMPARISON OF THE MODELS

The dynamic server selection model uses a state descriptioin this section we compare the different models with each

(xl,...,xk,yl,...

,yr) With 2k entries. However, in practice, other. For illustrative purposes we restrict ourselvesdpstem
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TABLE |
DYNAMIC SERVER SELECTION THE AVERAGE NUMBER OF FOREGROUND JOB&N

p1/p2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 0.101 0.102 0.103 0.104 0.105 0.107 0.108 0.109 0.110 0.111
0.1 0.102 0.107 0.109 0.112 0.114 0.1127 0.119 0.121 0.123 0.124
0.2 0.103 0.109 0.116 0.120 0.123 0.127 0.131 0.135 0.138 0.141
0.3 0.104 0.1122 0.120 0.128 0.133 0.139 0.145 0.152 0.158 0.163
0.4 0.105 0.114 0.123 0.133 0.144 0.152 0.161 0.171 0.181 0.191
0.5 0.107 0.1127 0.127 0.139 0.152 0.167 0.180 0.195 0.213 0.231
0.6 0.108 0.119 0.131 0.145 0.161 0.180 0.202 0.225 0.254 0.289
0.7 0.109 0.121 0.135 0.152 0.171 0.195 0.225 0.264 0.314 0.384
0.8 0.110 0.123 0.138 0.158 0.181 0.213 0.254 0.314 0.406 0.562
0.9 0.111 0.124 0.141 0.163 0.191 0.231 0.289 0.384 0.562 0.963

po=01andB; =1fori=0,1,2

p1/p2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 0551 0571 0596 0.625 0.658 0.698 0.743 0.796 0.854 0.921
0.1 0.571 0.608 0.639 0.676 0.719 0.771 0.832 0.906 0.995 1.104
0.2 0596 0.639 0.687 0.734 0.790 0.858 0.943 1.049 1.187 1.372
0.3 0.625 0.676 0.734 0.802 0.875 0.967 1.085 1.243 1.465 1.797
0.4 0.658 0.719 0.790 0.875 0.980 1.106 1.277 1.523 1.909 2.557
0.5 0.698 0.771 0.858 0.967 1.106 1.293 1556 1975 2737 4.112
0.6 0.743 0.832 0943 1.085 1.277 1556 2.003 2.844 4.671—

0.7 0.796 0.906 1.049 1.243 1523 1975 2.844 5.077— —

0.8 0.854 0.995 1.187 1.465 1909 2.737 4.671 — —

0.9 0.921 1.104 1.372 2557 2557 4112 — — — —
po=05andB; =1fori=0,1,2

p1/p2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 1201 1283 1.384 1511 1.672 1.883 2.167 2571 3.187 4.051
0.1 1.283 1400 1530 1.696 1914 2212 2.642 3.308 4.393 5.790
0.2 1.384 1530 1.712 1936 2245 2694 3405 4.640 6.636—

0.3 1511 1696 1936 2.263 2.728 3.477 4.840 7.391-— —

0.4 1.672 1914 2245 2728 3512 4971 8.020 — — —

0.5 1.883 2.212 2.694 3477 4971 8317 — - — —

0.6 2.167 2.642 3.405 4.840 8.020 —

0.7 2571 3.308 4.640 7.391 -— — — — — —

0.8 3.187 4.393 6.636 — — — — — — —

0.9 4.051 5790 -—
po=09andB; =1fori=0,1,2

with two mobile networks. We first consider the static servexach other, the gains decrease. It is apparently the casiatha
selection model and the dynamic server selection model. Fobalanced system, the performance is more sensitive to the
the static model we assume that the decision maker has tontlecisions that are made. Since the static policy is complete
over a parameterr € [0,1] that determines the fraction ofindependent of any information in the system, it does notenak
foreground jobs that are sent to server 1 (and thus a fractitre subtle choices that the dynamic policy makes.

1 — a is sent to server 2). For convenience, denete= « We compare our dynamic policy also with the ‘join the
andaz = 1 — «a. Then server has an effective occupationshortest queue’ (JSQ) policy. Upon arrival of a job, the JSQ
rate a;po + p; for i = 1,2. Note that for stability purposes policy selects the server with the least number of jobs, the.

we require thatpy < (1 — p1) + (1 — p2). Moreover, the policy selectsirg min;—; »{x; +v;}. Note that the JSQ policy
two servers become independent, and from classical quguetan be used in absence of detailed information on the differe

theory results we have that job types. It only needs the total number of jobs presenteti ea
Q1P Q200 server to make a decision. Hence, this policy can be used
EN = . L
1—(aapo+p1) 1—(a2p0+ p2) when only the total number of transfers is given. Table III

depicts the gain of the dynamic server selection policy over

minimizing the above expression. We have done this fg?e JSQ. pollicy. The table shows that the performan.ce of the
several values ofy; for i — 1,2. Table Il shows the gain JSQ policy is very good for low to moderate occupation rates

in using the optimal dynamic policy versus the optimal statioz the servers. The policy has a performance that is within
policy computed as the relative difference 1% of the performance of the dynamic server selection policy

However, when the occupation rates increase, the discrgpan
ENstatic — I Naynanic 10, in performance between the JSQ policy and the dynamic server
ENstatic selection policy grows larger. Note that these experimeete
The results show that the gain is greatest when the systdome fors; = 1 for ¢ = 0,1, 2. When the service rates of the
is balanced, i.e., whep; and p, are comparable. When thedifferent networks are chosen to be more skewed instead of
system is more skewed, i.@y andp, differ significantly from comparable, the JSQ policy has even worse performance.

Clearly, one can easily find the optimal value far by
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TABLE Il
COMPARISON: GAIN IN STATIC VERSUS DYNAMIC SERVER SELECTION

p1/p2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 4.40%  8.32% 8.10% 6.77% 5.38% 3.96% 2.72% 1.70% 0.84% 0.18%
0.1 8.32% 10.03% 12.47% 11.96%  9.60% 7.25% 5.04% 3.20% 1.68% 3%0.6
0.2 8.10% 12.47% 14.60% 17.06% 15.93% 12.35%  8.92% 5.82% 3.32% .37%L
0.3 6.77% 11.96% 17.06% 20.51% 22.32% 20.05% 14.94% 10.18% 9%6.02 2.69%
0.4 5.38%  9.60%  15.93% 22.32% 26.58% 28.13% 23.92% 16.75% %0.20 4.61%
0.5 3.96%  7.25%  12.35% 20.05% 28.13% 33.21% 34.94% 27.95% %r.61 8.32%
0.6 2.72%  5.04% 8.92%  14.94% 23.92% 34.94% 41.60% 42.36% 30.92%.13%
0.7 1.70%  3.20% 5.82%  10.18% 16.75% 27.95% 42.36% 51.41% 51.38%0.22%
0.8 0.84%  1.68% 3.32% 6.02%  10.20% 17.61% 30.92% 51.38% 64.3892.51%
0.9 0.18%  0.63% 1.37% 2.69% 4.61% 8.32%  15.13% 30.22% 62.51% .69%/

po=01landg; =1fori=0,1,2

p1/p2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 21.14% 24.64% 27.72% 29.82% 31.06% 30.96% 29.28%  24.94% 08%/. 8.58%
0.1 24.64% 26.51% 30.05% 32.90% 34.90% 35.73%  35.17%  32.32% 42%5. 13.22%
0.2 27.72% 30.05% 32.26% 35.83% 38.60% 40.53% 41.21% 39.73% 78%4. 21.54%
0.3 29.82% 32.90% 35.83% 38.56% 42.27%  45.34%  47.23%  47.49% 77%4. 35.30%
0.4 31.06% 34.90% 38.60% 42.27% 45.58% 50.00%  53.48% 55.66% 91%b. 54.41%
0.5 30.96% 35.73% 40.53% 45.34% 50.00% 54.69% 59.82%  64.52% 31%70. 106.04%
0.6 29.28% 35.17% 41.21% 47.23% 53.48%  59.82%  66.42% 74.57% 4%/.0 -
0.7 24.94% 32.32% 39.73% 47.49%  55.66% 64.52% 74.57%  96.99% — —

0.8 17.08% 25.42% 34.78% 44.77% 55.91% 70.31% 7.04% — — —
0.9 8.58%  13.22% 21.54% 35.30% 54.41% 106.04% — — — -
po=05andB; =1fori=0,1,2

p1/p2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 36.21%  40.10% 43.65% 46.75% 49.46% 51.72% 53.66% 55.15% 27%6. 25.43%
0.1 40.10%  42.85% 46.81% 50.60% 54.07% 57.43% 60.87% 65.18% 24%6. 141.79%
0.2 43.65%  46.81% 50.20% 54.64% 59.09% 63.76% 69.47% 81.01% .11%l —
0.3 46.75%  50.60% 54.64% 59.07% 64.56% 70.96% 81.64%  132.23% — —
0.4 49.46%  54.07% 59.09% 64.56% 70.83% 80.59%  121.92% — — —
0.5 51.72%  57.43% 63.76% 70.96% 80.59%  116.41% — — — —
0.6 53.66%  60.87% 69.47% 81.64%  121.92% — — — — —
0.7 55.15%  65.18% 81.01%  132.23% — - - — — -
0.8 56.27%  76.24%  141.11% — — — — — — —
0.9 25.43%  141.79% — — — — — — — —

po=09andB; =1fori=0,1,2

Finally, we compare the Bayesian learning model to the VI. CONCLUSIONS AND FUTURE WORK
dynamic server selection model. Note that the implemeontati
of the Bayesian model is less straightforward than the otherin this paper we have studied the concurrent access problem
models that we have studied. The state space of the Bayesiarwhich a multi-antenna device can connect to multiple
model is not discrete due to the probability distributionatt mobile networks. We answer the question how jobs of the
are part of the state space. Hence, we have restricted tse patevice can utilize the networks in the best way. We do this
ble values of the probability distributions to an equidistgrid by studying two settings: a setting in which different job
on the interval0, 1]. In doing so, the state space of the modeypes can be distinguished, and the setting in which only
becomes discrete and easier to implement with the sacrifibe total number of jobs at each server can be observed. For
of a little accuracy. In our experiments, we chose to dividhe former, we compare two policies: a static server salpcti
the interval [0, 1] into 20 equidistant segments and adjustegblicy (which does not need state information, but only the
the transitions of the probabilities accordingly such ttiee average server occupancy) and a dynamic server selection
transitions were mapped back onto the grid. In Table IV ormlicy. The performance of the dynamic server selectioicpol
can see that the performance of the Bayesian model is supeiso significantly better than the static policy. For the Iatte
to the JSQ policy. The optimal policy of the Bayesian modektting, we compare a join the shortest queue (JSQ) policy,
is within 1% of optimality (compared to the full informationand a Bayesian learning policy. Both policies have very good
dynamic server selection model). For higher occupancysratperformance when the occupancy rates at the servers are low
the performance of the Bayesian model becomes significantilymoderate. However, when the occupancy rates grow larger,
better than the performance of the JSQ policy. This has ttee performance of the Bayesian learning policy becomes
do with the fact that the Bayesian model uses the completignificantly better than the JSQ policy.
history of actions to estimate the number of foreground andThere are a number of interesting avenues of further re-
background jobs at the server. Even when the service ratgarch. First, it would be interesting to study a job-splittal
parameters are chosen more skewed, the Bayesian modeliRaghich jobs can be split and sent simultaneously over the
a performance that is (usually) within 10% of optimality.  different networks. The model is highly complex due to the
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TABLE Il
COMPARISON: GAIN IN JOIN THE SHORTEST QUEUE VERSUS DYNAMIC SERVER SELECON
p1/p2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.1 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.02% 0.04% 0.05% 0.12%
0.2 0.00% 0.01% 0.01% 0.03% 0.04% 0.04% 0.05% 0.07% 0.12%—
0.3 0.00% 0.01% 0.03% 0.03% 0.05% 0.07% 0.08% 0.11% — —
0.4 0.00% 0.01% 0.04% 0.05% 0.05% 0.07% 0.10% — — —
0.5 0.00% 0.01% 0.04% 0.07% 0.07% 0.08% — — — —
0.6 0.00% 0.02% 0.05% 0.08% 0.10% — — — — —
0.7 0.00% 0.04% 0.07% 0.11% — — - - — -
0.8 0.00% 0.05% 0.12% — — — — — — —
0.9 0.00% 0.12% — — — — — — — —
po=01landp; =1fori=0,1,2
p1/p2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 0.00% 0.00% 0.02% 0.06% 0.10% 0.14% 0.15% 0.19% 0.21% 0.24%
0.1 0.00% 0.02% 0.04% 0.09% 0.15% 0.21% 0.26% 0.32% 0.34% 0.85%
0.2 0.02% 0.04% 0.07% 0.13% 0.21% 0.30% 0.40% 0.50% 0.79% —
0.3 0.06% 0.09% 0.13% 0.18% 0.27% 0.39% 0.55% 0.75% — —
0.4 0.10% 0.15% 0.21% 0.27% 0.34% 0.47% 0.68% — — —
0.5 0.14% 0.21% 0.30% 0.39% 0.47% 0.58% — — — —
0.6 0.15% 0.26% 0.40% 0.55% 0.68% — — — — —
0.7 0.19% 0.32% 0.50% 0.75% — — — — — —
0.8 0.21% 0.34% 0.79% — — — — — — —
0.9 0.24% 0.85% — — — — — — — —
po=05andg; =1fori=0,1,2
p1/p2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 0.00% 0.02% 0.08% 0.22% 0.47% 0.87% 1.54% 2.73% 5.18% 11.87%
0.1 0.02% 0.04% 0.11% 0.25% 0.53% 1.05% 2.03% 4.15%  10.36%  28.39
0.2 0.08% 0.11% 0.18% 0.32% 0.61% 1.25% 2.75% 7.46%  25.02% —
0.3 0.22% 0.25% 0.32% 0.43% 0.70% 1.49% 451%  19.51% — —
0.4 0.47% 0.53% 0.61% 0.70% 0.93% 244%  14.81% — — —
0.5 0.87% 1.05% 1.25% 1.49% 2.44%  12.77% — — — —
0.6 1.54% 2.03% 2.75% 451% 14.81% — — — - -
0.7 2.73% 4.15% 7.46%  19.51% — — — — — —
0.8 5.18%  10.36% 25.02% — — — — — — —
0.9 11.87% 28.39% — — — — — — —

po=09andB; =1fori=0,1,2

dependence of the networks as a result of splitting a jols. It i[4] IEEE Standard 802.11n, “Part 11: Wireless LAN mediumessccon-
reasonable to think that a mixture of a light-traffic and atyea

traffic approximation could lead to good results. Second, w

assume that the traffic streams are stationary. Howeves, it |
more realistic to assume that they are not and are governed b
a Markov modulated Poisson process (of which the paramet
are generally not known). In combination with the statitic
learning algorithm this addition could create an automated
system in which the decision making is done autonomously!’]
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